Simulation-Based Verification of Autonomous Controllers via Livingstone PathFinder
نویسندگان
چکیده
AI software is often used as a means for providing greater autonomy to automated systems, capable of coping with harsh and unpredictable environments. Due in part to the enormous space of possible situations that they aim to addrs, autonomous systems pose a serious challenge to traditional test-based verification approaches. Efficient verification approaches need to be perfected before these systems can reliably control critical applications. This publication describes Livingstone PathFinder (LPF), a verification tool for autonomous control software. LPF applies state space exploration algorithms to an instrumented testbed, consisting of the controller embedded in a simulated operating environment. Although LPF has focused on NASA’s Livingstone model-based diagnosis system applications, the architecture is modular and adaptable to other systems. This article presents different facets of LPF and experimental results from applying the software to a Livingstone model of the main propulsion feed subsystem for a prototype space vehicle.
منابع مشابه
Formal Verification for a Next-Generation Space Shuttle
This paper discusses the verification and validation (V&V) of advanced software used for integrated vehicle health monitoring (IVHM), in the context of NASA’s next-generation space shuttle. We survey the current V&V practice and standards used in selected NASA projects, review applicable formal verification techniques, and discuss their integration into existing development practice and standar...
متن کاملIntelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملCombining Model Checking and Runtime Verification for Safe Robotics
A major challenge towards large scale deployment of autonomous mobile robots is to program them with formal guarantees and high assurance of correct operation. To this end, we present a framework for building safe robots. Our approach for validating the end-to-end correctness of robotics system consists of two parts: 1) a high-level programming language for implementing and systematically testi...
متن کاملFrom Livingstone to SMV Formal Veri cation for Autonomous Spacecrafts
To ful ll the needs of its deep space exploration program, NASA is actively supporting research and development in autonomy software. However, the reliable and cost-e ective development and validation of autonomy systems poses a tough challenge. Traditional scenario-based testing methods fall short because of the combinatorial explosion of possible situations to be analyzed, and formal veri cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004